
Software User Manual (SUM)
for the

ALERT SERVICES VERSION 1.3.4.2

26 March 1997

Sun Solaris 2.5.1

Program Manager
Common Hardware Software
Fort Monmouth, NJ 07703

Page 2 of 9 Pages

Table of Contents

1. SCOPE 3

1.1. IDENTIFICATION 3
1.2. SYSTEM OVERVIEW 3
1.3. DOCUMENT OVERVIEW 3

2. REFERENCED DOCUMENTS 3

3. SOFTWARE SUMMARY 3

3.1. SOFTWARE APPLICATION 3
3.2. SOFTWARE INVENTORY 3
3.3. SOFTWARE ENVIRONMENT 4
3.4. SOFTWARE ORGANIZATION AND OVERVIEW OF OPERATION 4
3.5. CONTINGENCIES AND ALTERNATE STATES AND MODES OF OPERATION 5
3.6. SECURITY AND PRIVACY 5
3.7. ASSISTANCE AND PROBLEM REPORTING 5

4. ACCESS TO THE SOFTWARE 5

4.1. FIRST-TIME USER OF THE SOFTWARE 5
4.1.1. EQUIPMENT FAMILIARIZATION 5
4.1.2. ACCESS CONTROL 6
4.1.3. INSTALLATION AND SETUP 6

4.2. INITIATING A SESSION 6
4.3. STOPPING AND SUSPENDING WORK 7

5. PROCESSING REFERENCE GUIDE 7

5.1. CAPABILITIES 7
5.2. CONVENTIONS 8
5.3. PROCESSING PROCEDURES 8

5.3.X. [ASPECT OF SOFTWARE USE] 8
5.4. RELATED PROCESSING 8
5.5. DATA BACKUP 8
5.6. RECOVERY FROM ERRORS, MALFUNCTIONS, AND EMERGENCIES 8
5.7. MESSAGES 8
5.8. QUICK-REFERENCE GUIDE 9

6. NOTES 9

Page 3 of 9 Pages

1. Scope

1.1. Identification
Common Operating Environment (COE) Alerts Software Version 1.3.4.2 on the following platforms:
SUN SPARC20 Solaris 2.5.1.

1.2. System Overview
The COE Alerts Software allows its users to send, receive, and manage alerts. These alerts consist of
sender-specified text, a sender-specified classification, and a sender-specified priority, as well as sender
identification, a time-tag, and a sender-specified alert-ID. The receiver of alerts can control what are
received by means of an alert-ID mask, which is a UNIX regular expression which an incoming alert must
match in order for the receiver to be notified of the alert. The sender also has the option of specifying that
an alert is “persistent”. Persistent alerts are stored in a database when sent, and can survive a system
shutdown.

1.3. Document Overview
This document is a hands-on software user manual. It’s purpose is to provide instructions on using the
Alert software. The document is organized into the following sections:
1. Scope
2. Referenced Documents
3. Software Summary
4. Access to Software
5. Processing Reference Guide
6. Notes

2. Referenced Documents
SUN SPARC 20 Solaris 2.5.1 Operating System Documents

3. Software Summary

3.1. Software Application
The COE Alerts Software provides client applications with the capability to send, receive, and respond to
alerts of varying degrees of urgency and classification level using a common software interface.

3.2. Software Inventory
The Alerts Software is provided in the form of executable program, source, and scripts. The following is a
list of each directory and the files it contains:

• bin directory

alerts_server

Page 4 of 9 Pages

run_alerts
run_test_alert
run_test_display
run_ctest_alert
run_ctest_display
server_shutdown
test_alert_client
test_display_client
test_c_alert_client
test_c_display_client
up

3.3. Software Environment
The COE Alerts Software runs on networks of SUN SPARC20s running Solaris 2.5.1 under the Unix
operating system.

3.4. Software Organization and Overview of Operation
The COE Alerts Software is organized into two distinct categories: Alert Server Software, and Alert
Client Software. The diagram below shows the interaction between the Alert Server and Client software.
Descriptions for these categories follow the diagram.

User
Client

User
Client

User
Client

Manager
Client

Alerts
Server
Software

Alert

Alert

Alert

Control

Page 5 of 9 Pages

Alert server software
All Alert Server Software contributes only to the alerts_server process, which acts as a mediator between
Alert client applications, passing alerts back and forth between them, storing "persistent" alerts in the
database, and retrieving them when necessary.

Alert client software
Ada or C applications that wish to send or receive alerts gain access to the alerts_server process via the
Alert Client Software. Such applications can be divided into two occasionally overlapping categories:
Alert User clients, who only need to send and receive alerts and responses, and Alert Manager clients,
who need to be able to control the way that the alerts_server process behaves. These two groups of clients
use two distinct subgroups of the Alert Client Software.

Alert user clients
An Alert User Clients application consists of routines contained in the Alert_Display_Operations and
Alert_Client_Operations packages or C programs. These routines provide the following capabilities:
registration with the alerts_server process, filtering of incoming alerts, receiving and sending alerts.

Alert manager clients
An Alert Manager Clients application consists of routines contained in the
Alert_Management_Operations package or C program. These routines provide the following capabilities:
suspension and resumption of alert notification, disabling and enabling of processing of non-critical alerts
by the alerts_server, and disabling and enabling the capability for suspension and resumption of alert
notification.

3.5. Contingencies and Alternate States and Modes of Operation
The COE Alerts Software is embedded into a host system and adopts the modes and states of that system.

3.6. Security and Privacy
The COE Alerts Software has been implemented to support a "system-high" security regimen (i.e. it
depends on its host system for security services and support.)

3.7. Assistance and Problem Reporting
Submit all Common Software (CS) problem reports to "The Common Software Bulletin Board".

4. Access to the Software

4.1. First-Time User of the Software

4.1.1. Equipment Familiarization
Alerts v1.3.4.2 runs on networks of SUN SPARC20s running Solaris 2.5.1 under the Unix operating
system. Procedures for turning on and off power, keyboard layout ,and appearance of the cursor can be
found in a SUN reference manual.

Page 6 of 9 Pages

4.1.2. Access Control
Alerts v1.3.4.2 does not have any security features. Any passwords needed, such as user log in, should be
provided.

4.1.3. Installation and Setup
Alerts v1.3.4.2 will be installable from an 8 mm tape in DII COE segmented format. Log onto the DII
workstation (onto which the software is to be installed) as ‘sysadmin’. Insert the tape into the tape drive
and start the COE Segment Installer Tool by selecting ‘Segment Installer’ from the ‘Software’ pulldown
menu. Click on ‘Select Source’ in the Installer window and then select ‘Other’. In the input area, type
‘/dev/rmt/0mn’ (or the tape device file that’s appropriate for your system), and then click ‘Ok”. Click on
the Read Contents button to read the contents of the tape. When the Installer is finished reading the tape,
an entry for the Alerts segment will appear at the bottom of the Installer window. Select the Alerts
segment (by clicking it once) and then click the Install button. Alerts v1.3.4.2 will be installed under the
/h/ALRTSV directory. Once the software has been installed on a machine, a TCP/IP port number needs to
be reserved for the server so that clients on either a LAN or WAN can attach to the server. To accomplish
this, the alerts_server process requires a socket entry in the /etc/services file. Verify that the following line
has been added to that file:

ALERTS 8001/tcp alerts_server

4.2. Initiating a Session

Change directories to the directory where the Alerts software was installed. The alerts base directory for
Version 1.3.4.2 is ALRTSV.

$ cd /h/ALRTSV

Only one alert_server process can run on a single machine at a time. Before the alerts_server process can
be started, verify that there is not already another server running. Use the following command to check for
an existing server :

$ ps -ef | grep ALERTS

If the output of this command shows an existing server, it needs to be shutdown before a new server can
be started. This is accomplished with the server_shutdown command located in the /h/ALRTSV/bin
directory.

$ cd /h/ALRTSV/bin

$ server_shutdown

The alerts_server process can then be started by running the following script:

$ run_alerts

Initially, the script adds /h/ALRTSV/bin to the PATH environment variable, sets the DISPLAY variable
to the host name of the machine on which the script was started, and sets the ALERTS environment
variable to /h/ALRTSV. Next, the script sets the ALERT_DB environment variable to the name of the
alerts database. This environment variable is combined with the host name of the machine on which the
server is running to create the file into which persistent alerts are stored. The server process will create

Page 7 of 9 Pages

this file if it does not already exist. The script also sets the ALERTS_HOST environment variable to the
host name of the machine on which the script was started. Any clients that which to attach to the server
must also have the ALERTS_HOST environment variable set to the host name of the machine on which
the server is running. The alerts_server process uses UNIX sockets to perform inter-process
communication, and cannot be initiated if there are any old connections waiting to time out. The
run_alerts script checks to see if there are any connections still waiting to time out. Sockets can take as
long as 5 minutes to shutdown, so the script will wait until they go away. When the process finally starts,
the following message appears:

 Starting alerts_server ...

The alerts server should now be up and running.

4.3. Stopping and Suspending Work
Before the alerts_server process can be started, it is necessary to ensure that there is not another
alerts_server process already running. A server_shutdown command should be executed first:

$ bin/server_shutdown

5. Processing Reference Guide

5.1. Capabilities
The Alert Services v1.3.4.2 uses TCP/IP (Berkley sockets) to communicate between client and server. This
architecture allows for many different configurations of clients and servers. The Alerts Services can be
accessed from clients throughout a LAN or WAN environment. Client/Server sessions can be run in
different configurations; such as having the server and client processes running on the same machine, or
on different machines on the same LAN, or on different machines on separate LANS connected by a
router. For an application to communicate with a server across the network, the alert server in the
/etc/services file on each system must specify the same port number.

There are four possible configurations that the Alert Services can run in.

Configuration One

The server process and both client codes reside on one SPARC20 Configuration

Configuration Two

The server process resides on one SPARC20 and both client codes reside on different machines.

Configuration Three

Multiple server processes can exist on the LAN as long as there is no more than one server process per
machine. Any client processes on the LAN can attach to a specific server process by setting the
environment variable ALERTS_HOST to the host name of the machine running that server process.

Configuration four illustrates the use of Alerts over separate LANS using a router.

Configuration Four

Page 8 of 9 Pages

Multiple server processes can exist on one LAN and any number of clients can exist on a separate LAN,
with both LANs being connected via a router. As in Configuration Three, any client processes on the LAN
can attach to a specific server process by setting the environment variable ALERTS_HOST to the host
name of the machine running that server process.

5.2. Conventions
Not applicable. There are no conventions used by the software, such as the use of colors in displays, the
use of audible alarms, the use of abbreviated vocabulary, and the use of rules for assigning names or
codes.

5.3. Processing Procedures

5.3.x. [Aspect of Software Use]
There are no specific user-interfaces with the Alerts Server. Any user who will interface with the Alerts
Server will do so via client software and API calls.

5.4. Related Processing
The server process performs all operations in the background with no need for user intervention. When
the server is brought up, it first establishes a listen socket on which it waits for clients to attach. When a
client wants to register for notification, create, or delete an alert, it must first receive a new socket on
which to be serviced by the server. The server creates a task for that client and a new socket for it, and
goes back to listening for others. As clients attach, tasks are created to handle their requests.

The alerts server maintains three internal queues: alert notification queue, alert response queue,
and the alert queue. When applications register for alert notification or response, the alert ID pattern and
application socket ID are placed in the corresponding queue. When an alert is generated, it is put in the
alert queue. If the alert is marked as persistent, it is stored in a database or file. Once the alert is stored,
the alert server looks through the notification queue to find applications whose pattern matches the alert
ID. When a match is found, the alert is forwarded to the application. When an alert response is received, a
similar process is invoked using the response queue.

5.5. Data Backup
Not applicable.

5.6. Recovery from Errors, Malfunctions, and Emergencies
If the server process goes down for some reason, any alert that was marked as persistent will remain in the
alerts_db file and will be present when the server is brought back up. Any other alerts will be lost. If the
server crashes, the run_alerts script needs to be re-started.

5.7. Messages
The following error messages can occur during the execution of the Alerts Server:

Alert server failed to read client request
Cause: The server has encountered an error while trying to receive data from the socket connection it has
with the client.

Page 9 of 9 Pages

Alert printer not defined, using default
Cause: The environment variable ALERTS_PRINTER has not been set. The variable takes on a default
value and produces the error message.

Alerts server failed to establish listen socket
Cause: The server could not establish a socket on which to listen for new clients. Two reasons why a user
will see this error message are:

1) A user tries to start a server on a machine already running a server
2) An old listen socket is waiting to time out.

NOTE
 The run_alerts script will check for any old listen sockets and display a message that the socket is waiting
to time out before starting the server process.

Alerts server failed to convert listen socket
Cause: The server could not convert listen socket to non-blocking. The socket needs to be non-blocking
because if an IO request causes the server process to become blocked, NONE of its tasks can execute until
the IO completes.

Alerts server failed to accept client

Cause: A new socket connection can not be made with the client requesting services.

Error in bind

Cause: After socket was created, the socket descriptor could not be bound to an address.
This can occur any time a socket is created, whether the socket is a server listen socket or a socket for an
individual client.

5.8. Quick-Reference Guide
Not Applicable

6. Notes

COE - Common Operating Environment

CS - Common Software

TCP/IP - Transmission Control Protocol / Internet Protocol

LAN - Local Area Network

